

Tetrahedron Letters 46 (2005) 2189-2191

Tetrahedron Letters

Reaction of *meso*-tetraarylporphyrins with pyrazine *ortho*-quinodimethanes

Shengxian Zhao, Maria G. P. M. S. Neves, Augusto C. Tomé, Artur M. S. Silva, José A. S. Cavaleiro,* Maria R. M. Domingues and A. J. Ferrer Correia

Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal Received 7 January 2005; revised 4 February 2005; accepted 8 February 2005

Abstract—Novel π -extended porphyrins were obtained from the Diels–Alder reaction of *meso*-tetraarylporphyrins with a pyrazine o-quinodimethane derivative.

© 2005 Elsevier Ltd. All rights reserved.

Porphyrin functionalization has become the current focus of research due to its applications in diverse fields such as materials, supramolecular chemistry, biomimetic models for photosynthesis, catalysis and medicinal applications.¹

Over the past years, we have shown that peripheral double bond(s) of a porphyrin macrocycle can participate in Diels-Alder reactions, ² 1,3-dipolar cycloadditions ³ and other electrocyclic reactions ⁴ yielding novel chlorins, bacteriochlorins and isobacteriochlorins. Some of these compounds show excellent spectroscopic properties to be used in medicinal assessments related with photodynamic therapy of cancer cells.

Based on our previous results of the Diels–Alder reaction of *meso*-tetraarylporphyrins with *o*-benzoquino-dimethane, ^{2a} we have studied the reaction of *meso*-tetraarylporphyrins **1a**–**c** with a pyrazine *o*-quinodimethane derivative. In these reactions, the expected chlorins or bacteriochlorins were not obtained but instead the novel π -extended porphyrins **3–6** have been isolated (Scheme 1).

The pyrazine o-quinodimethane was generated in situ from the corresponding 2,3-bis(bromomethyl)pyrazine derivative 2 in the presence of porphyrins 1a–c.⁵ In the

Keywords: Diels-Alder reactions; Porphyrins and analogues; Pyrazines; Quinoxalines.

reaction with 1a, a TLC of the reaction mixture revealed the presence of starting porphyrin and four new compounds (Scheme 1). This mixture was separated by column chromatography (silica gel) into three fractions. The first fraction contained the starting porphyrin 1a (3.5 mg, 18%). The second one was shown to be a mixture of the monoaddition compounds 3a and 4a, which were then separated by preparative TLC.6,7 The third fraction was also a mixture of two compounds which, after being separated by preparative TLC, were identified as the bisaddition compounds 5a and 6a.8,9 The structures of the new compounds were deduced from their UV-vis, ¹H and ¹³C NMR and mass spectra. The main product (3a) has a C_2 symmetry. It is very clear from its 1H and ^{13}C NMR spectra that there are no sp³ carbons (and the corresponding protons) ruling out the structure of a chlorin. In the ¹H NMR spectrum, the singlet at δ 8.29 ppm corresponds to the two quinoxaline protons, the singlet at δ 8.76 ppm corresponds to two β-pyrrolic protons H-12 and H-13. Finally, the two doublets at δ 8.95 (J = 5.1 Hz) and 9.04 ppm (J = 5.1 Hz) correspond to the four β-pyrrolic protons H-7, H-8, H-17 and H-18. The 13 C NMR spectrum shows only 14 signals, which correspond to 'half' of the molecule [the carbons of the C₆F₅ groups appear as small signals (m, δ 114.9–148.2) due to the coupling with the fluorine atoms and to the long relaxation times]. The FAB mass spectrum of 3a shows a peak at m/z 1127 ([M+H]⁺) and its UV-vis spectrum shows a pronounced red shift of both Soret and Q bands relatively to 1a, as expected for a porphyrin with an extended conjugation of the π -system.

^{*} Corresponding author. Tel.: +351 234 370 717; fax: +351 234 370 084; e-mail: jcavaleiro@dq.ua.pt

Scheme 1.

Compound 4a has an interesting structure, resulting from a cyclization reaction between the β-fused quinoxaline ring and the adjacent meso-aryl group. Its mass spectrum shows a peak at m/z 1107 ([M+H]+), which means that HF has been eliminated from 3a. The ¹H NMR spectrum shows two signals at δ -1.49 and -1.20 ppm corresponding to the NH protons and one singlet at δ 8.47 ppm corresponding to the quinoxaline proton. The β-pyrrolic protons H-12 and H-13 appear as an AB spin system at δ 8.68 (J = 5.0 Hz), while the protons H-17 and H-18 appear as two doublets at δ 8.83 (J = 5.0 Hz) and 8.94 ppm (J = 5.0 Hz). The β -pyrrolic proton H-8 appears as a doublet at δ 8.79 ppm (J = 5.0 Hz) and, surprisingly, H-7 appears as a double doublet at δ 9.47 ppm (J = 5.0 Hz and 11.2 Hz); this signal splitting is due to the through-space coupling with the ortho-fluorine atom of the adjacent meso-aryl group. 10 The UV-vis spectrum of 4a shows a pronounced red shift of both Soret and Q bands relatively to 3a.

The mass spectrum of 5a shows a peak at m/z 1279 ([M+H]⁺), which indicates that it comes from a bisaddition process. Its ¹H NMR spectrum shows only three singlets: one at δ –2.42 ppm corresponding to the NH protons, one at δ 8.27 ppm corresponding to the four equivalent quinoxaline protons and another one at δ 8.96 ppm corresponding to the four β -pyrrolic protons. It is evident from this 1H NMR spectrum that **5a** resulted from a site specific bisaddition to opposite pyrrolic rings and not to adjacent pyrrolic rings. The mass spectrum of compound 6a shows a peak at m/z 1259 ([M+H]⁺). Its ¹H NMR spectrum shows that the β-pyrrolic proton H-7 appears as a double doublet of doublets at δ 9.48 ppm due to the coupling with NH (J = 1.7 Hz, long-range coupling), H-8 (J = 5.0 Hz)and with ortho-fluorine atoms of the fused meso-aryl group at position 5 (J = 10.4 Hz), while H-8 appears at δ 8.72 ppm as a broad doublet due to the small coupling with NH (responsible for the broadening of the signal) and with H-7. Protons H-17 and H-18 appear as an AB spin system (δ 8.898 and 8.899 ppm, J = 4.8 Hz). This compound has an absorption band at 744 nm in its UV–vis spectrum.

Ouite similar results were obtained when we used porphyrin 1b. In this case, the formation of compounds 4b and 6b resulted from the elimination of HCl from **3b** and **5b**, respectively. Since porphyrin **1c** is much less reactive as a dienophile than **1a** and **b**, and since there is no halogen atoms at the *meso*-phenyl groups, we expected to obtain only the monoaddition product 3c. However, surprisingly, together with 3c (3% yield), a reasonable amount of 4c (16% yield) was also formed. In this case, since the formation of 4c could not result from the elimination of HX, possibly it was formed by an oxidative coupling reaction. Attempted formation of 4c by refluxing 3c in chloroform in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone was unsuccessful. Also refluxing 3a, b and c in 1,2,4-trichlorobenzene did not afford the corresponding derivatives 4. These experiments seem to indicate that the coupling process must occur before the aromatization of the Diels-Alder adduct.

Other π -extended porphyrin systems, resulting from the oxidative cyclization of *meso*-aryl groups with a pyrrolic β -position ^{11,12} or from Bergman cyclization of porphyrinic-enediynes, ^{13,14} were recently described.

The ESI-MS spectra of all new porphyrins showed the [M+H]⁺ ion, except the bisadducts **5a** and **6a** which showed the [M+2H]⁺ ions as the most abundant ones, respectively at m/z 1280 and 1260. The observation of these [M+2H]⁺ ions as has been already observed in FAB-MS spectra of dimeric and fluorinated porphy-

rins. 15,16 The formation of the [M+2H]⁺ in these two cases could be due to the presence of fluorine atoms and additional nitrogen atoms. Studies of the fragmentation of each [M+H]⁺ and [M+2H]⁺ ions by ESI-MS/ MS show that compounds 3a-6a display very similar spectra. While 3a and 4a show loss of one to five HF molecules, 5a and 6a show loss of one to four HF molecules. Loss of one C₆F₅· and combined loss of C₆F₅· with one to four (for 3a and 4a) or one to three (for 5a and 6a) HF molecules is also observed. The ESI-MS/MS spectra of porphyrins 3b to 6b show a similar fragmentation pathway, namely successive loss of one to four HCl molecules, loss of one 2,6-Cl₂C₆H₃ and combined loss of 2,6-Cl₂C₆H₃· with one to three HCl molecules. ESI-MS/MS spectra of 3c and 4c showed loss of one and two C_6H_5 .

In conclusion, the Diels–Alder reaction of *meso*-tetraarylporphyrins with the pyrazine o-quinodimethane affords mainly the oxidized compounds $\mathbf{3a}$ – \mathbf{c} instead of the expected chlorin adducts. The bisaddition is site specific, occurring in opposite pyrrolic rings and leads to compounds $\mathbf{5}$ and $\mathbf{6}$. The novel polycyclic products $\mathbf{4a}$ – \mathbf{c} , $\mathbf{6a}$ and \mathbf{b} result from coupling reactions between the β fused quinoxaline ring and one adjacent *meso*-aryl group. These π -extended porphyrin derivatives show absorption bands at wavelengths higher than 700 nm, an important feature for their potential use as photosensitizers in the photodynamic therapy (PDT) of tumours.

Acknowledgements

Thanks are due to the University of Aveiro and Fundação para a Ciência e a Tecnologia (FCT, Portugal) and FEDER for funding the Organic Chemistry Research Unit and Project POCTI/1999/QUI/32851. S. Zhao also thanks FCT for a Ph.D. grant (SFRH/BD/2936/2000).

References and notes

- (a) The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic: San Diego, 2000; Vol. 6;
 (b) Anderson, H. L. Chem. Commun. 1999, 2323–2330;
 (c) Sternberg, E. D.; Dolphin, D. Tetrahedron 1998, 54, 4151–4202;
 (d) Tsuda, A.; Osuka, A. Adv. Mater. 2002, 14, 75–79.
- (a) Tomé, A. C.; Lacerda, P. S. S.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S. *Chem. Commun.* 1997, 1199–1200; (b) Silva, A. M. G.; Tomé, A. C.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S. *Tetrahedron Lett.* 2000, 41, 3065–3068
- (a) Silva, A. M. G.; Tomé, A. C.; Neves, M. G. P. M. S.; Silva, A. M. S.; Cavaleiro, J. A. S. *Chem. Commun.* 1999, 1767–1768; (b) Silva, A. M. G.; Tomé, A. C.; Neves, M. G. P. M. S.; Silva, A. M. S.; Cavaleiro, J. A. S.; Perrone, D.; Dondoni, A. *Tetrahedron Lett.* 2002, 43, 603–605.
- Cavaleiro, J. A. S.; Neves, M. G. P. M. S.; Tomé, A. C. Arkivoc 2003, xiv, 107–130 (www.arkat-usa.org).
- 5. Typical experiment: a 1,2,4-trichlorobenzene (6 mL) solution of meso-tetrakis(pentafluorophenyl)porphyrin 1a (20 mg), 2,3-bis(bromomethyl)pyrazine derivative 2 (65 mg, 10 equiv) and sodium iodide (92 mg, 30 equiv)

- was heated at reflux (214 °C) for 7 h. A TLC of the reaction mixture revealed some starting porphyrin and four new compounds. The reaction mixture was diluted with CHCl₃ (50 mL), washed with an aqueous solution of $Na_2S_2O_3$ (3 × 10 mL) and then it was dried (Na_2SO_4). The resulting mixture was separated by column chromatography (silica gel) using a gradient of petroleum ether/chloroform as eluent.
- 6. Compound **3a**: 34% yield, mp > 300 °C. ¹H NMR (300 MHz, CDCl₃) δ: -2.62 (s, 2H, NH), 8.29 (s, 2H, quino-H), 8.76 (s, 2H, β-H), 8.95 (d, 2H, β-H, J = 5.1 Hz), 9.04 (d, 2H, β-H, J = 5.1 Hz). ¹³C NMR (75 MHz, CDCl₃) δ: 100.7, 105.7, 113.4, 123.6, 128.0, 128.5, 130.9, 134.7, 138.2, 139.1, 139.7, 145.2, 148.4, 155.7. UV-vis (CHCl₃) λ_{max} (log ε) 379 (4.71), 425 (5.32), 525 (4.20), 564 (4.20), 608 (3.97), 662 (3.95) nm. FAB-MS m/z 1127 (M+H)⁺. Anal. Calcd for C₅₂H₁₀F₂₀N₈: C, 55.43; H, 0.89; N, 9.95. Found: C, 55.13; H, 0.89; N, 10.09.
- 7. Compound **4a**: 3% yield, mp > 300 °C. 1 H NMR (300 MHz, CDCl₃) δ : -1.49 and -1.20 (2s, 2H, NH), 8.47 (s, 1H, quino-H), 8.68 (AB, 2H, β -H, J = 5.0 Hz), 8.79 (d, 1H, β -H, J = 5.0 Hz), 8.83 (d, 1H, β -H, J = 5.0 Hz), 8.94 (d, 1H, β -H, J = 5.0 Hz), 9.47 (dd, 1H, β -H, J = 5.0 and 11.2 Hz). UV-vis (CHCl₃) λ _{max} 388, 439, 482, 651, 707 nm. FAB-MS m/z 1107 (M+H)⁺. HRMS (FAB) calcd for C₅₂H₁₀F₁₀N₈ (M+H)⁺: 1107.0725. Found 1107.0728.
- 8. Compound **5a**: 6% yield, mp > 300 °C. ¹H NMR (300 MHz, CDCl₃) δ : -2.42 (s, 2H, NH), 8.27 (s, 4H, quino-H), 8.96 (s, 4H, β-H); UV-vis (CHCl₃) λ _{max} (log ε) 368 (4.70), 379 (4.70), 424 (5.28), 459 (5.17), 542 (4.20), 585 (4.79), 635 (4.21), 695 (4.47) nm. FAB-MS m/z 1279 (M+H)⁺.
- 9. Compound **6a**: 1% yield, mp > 300 °C. ¹H NMR (300 MHz, CDCl₃) δ : -1.42 and -1.03 (2s, 2H, NH), 8.26 (s, 1H, quino-H), 8.35 (s, 1H, quino-H), 8.52 (s, 1H, quino-H), 8.72 (br d, 1H, H-8, J = 5.0 Hz), 8.898 and 8.899 (AB, 2H, H-17 and H-18, J = 4.8 Hz), 9.48 (ddd, 1H, H-7, J = 1.7, 5.0 and 10.4 Hz). UV-vis (CHCl₃) λ_{max} 379, 440, 497, 575, 676, 744 nm. MS (FAB) m/z 1259 (M+H)⁺. HRMS (FAB) calcd for C₆₀H₁₀F₁₉N₁₂ (M+H)⁺: 1259.0848. Found 1259.0845.
- (a) Yamamoto, G.; Ōki, M. J. Org. Chem. 1984, 49, 1913–1917; (b) Gribble, G. W.; Kelly, W. J. Tetrahedron Lett. 1985, 26, 3779–3782; (c) Mele, A.; Vergani, B.; Viani, F.; Meille, S. V.; Farina, A.; Bravo, P. Eur. J. Org. Chem. 1999, 187–196.
- (a) Barloy, L.; Dolphin, D.; Dupré, D.; Wijesekera, T. P. J. Org. Chem. 1994, 59, 7976–7985; (b) Richeter, S.; Jeandon, C.; Gisselbrecht, J.-P.; Ruppert, R.; Callot, H. J. J. Am. Chem. Soc. 2002, 124, 6168–6179; (c) Callot, H. J.; Ruppert, R.; Jeandon, C.; Richeter, S. J. Porphyrin Phthalocyanines 2004, 8, 111–119; (d) Fox, S.; Boyle, R. W. Chem. Commun. 2004, 1322–1323.
- 12. Yamane, O.; Sugiura, K.-I.; Miyasaka, H.; Nakamura, K.; Fujimoto, T.; Nakamura, K.; Kaneda, T.; Sakata, Y.; Yamashita, M. *Chem. Lett.* **2004**, *33*, 40–41.
- Aihara, H.; Jaquinod, L.; Nurco, D. J.; Smith, K. M. Angew. Chem., Int. Ed. 2001, 40, 3439–3441.
- (a) Nath, M.; Huffman, J. C.; Zaleski, J. M. Chem. Commun. 2003, 858–859; (b) Nath, M.; Huffman, J. C.; Zaleski, J. M. J. Am. Chem. Soc. 2003, 125, 11484–11485.
- Domingues, M. R. M.; Santana-Marques, M. G. O.; Domingues, P.; Faustino, M. A.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S.; Ferrer-Correia, A. J. Rapid Commun. Mass Spectrom. 2000, 14, 2025–2029.
- 16. Musselman, B. D.; Watson, J. T.; Chang, C. K. *Org. Mass Spectrom.* **1986**, *21*, 215–219.